
A Query-by-Singing System based on Dynamic Programming1
Jyh-Shing Roger Jang, Ming-Yang Gao

{jang, gao}@cs.nthu.edu.tw

Computer Science Department, National Tsing Hua University, Hsinchu, Taiwan

1 This is an on-going project supported by Cweb Inc. (http://www.4music.com.tw) and the Excellency Project
sponsored by the National Science Council at Taiwan, where the authors express many thanks. (This paper is published
in the International Workshop on Intelligent Systems Resolutions (the 8th Bellman Continuum), PP. 85-89, Hsinchu,
Taiwan, Dec 2000.)

Keywords

Content-based Music Retrieval, Audio Indexing and
Retrieval, Dynamic Programming, Dynamic Time
Warping, Audio Signal Processing, Query by Singing

Abstract

This paper presents a query-by-singing system of which
the comparison engine is mostly based on the concept of
dynamic programming (DP). The system, known as
CBMR (Content-Based Music Retrieval), facilitates the
content-based song database retrieval via users' acoustic
inputs. CBMR first takes the user's acoustic input from a
microphone and converts it into a pitch vector. Then two
levels of comparison procedures, both based on the
concept of dynamic programming, are invoked to
compute the similarity between the user's pitch vector
and that of each song in the database. CBMR then shows
a ranked result according to the computed similarity
scores. We have tested CBMR extensively and found the
performance is satisfactory for average people with
mediocre singing capability. Our studies demonstrate the
importance of using dynamic programming for elastic
matching in multimedia informational retrieval.

1. Introduction

This paper presents a query-by-singing system that is
based on two levels of dynamic programming as its
comparison engine. The system facilitates the content-
based song database retrieval via users' acoustic inputs,
which means that the system's friendly interface allows
the users to retrieve songs based on a few notes sung or
hummed naturally to the microphone. Therefore the
traditional way of song retrieval (particularly in the
applications of karaoke or digital music library) via the
search of keywords of titles, singers or lyrics can be
avoided.

The tasks of the system can be categorized into three
stages: preprocess, on-line process, and postprocess. For
the preprocess stage, we need to read each song and put

the melody/beat information into several indexed files
for quick access. Usually the songs in the database are in
MIDI (Music Instrument Digital Interface) format, which
contains all the music elements of a song and it is
equivalent to sheet music. Before extracting the
pitch/beat information, we also need to identify the major
track of the MIDI file. The major track is more or less
equivalent to the vocal track of a MIDI file, which can be
defined as the track that, when hearing it, human can
identify the intended song immediately.

During the on-line process stage, the user can specify a
query by singing or humming a piece of tune (that
contains several notes for identifying a song) to a PC
microphone directly. Several time-domain-based
methods, such as autocorrelation or average magnitude
difference function, are used to find the most likely pitch,
and some heuristics (such as continuity and energy levels)
are employed to eliminate unwanted pitches which might
result from either unvoiced segments of the acoustic
input or the undesirable effect of pitch doubling.

At the postprocess stage, the computed pitch vector
together with related timing information are transformed
into the same middle representation that was used in
encoding the pitch/beat information of songs in the
database. Before invoking similarity comparison, the
middle representation must be transformed into a format
that does not rely on the absolute values of the identified
pitches. This is usually done by the difference operator,
as reported by previous work [1,7,8,9,10]. However, we
found that the difference operator amplifies noises and
leads to poor performance. Thus we adopt a heuristic
method to shift the input pitch vector to have the same
average value as that of each song's pitch in the database.
Moreover, we can apply key transposition to find a better
shifted pitch vector for a better match in dynamic time
warping. The system then returns a ranked list according
to similarity scores.

The preprocess requires human interaction to identify the
major track for extracting the pitch/beat information
from a song in MIDI format. Once the major track is

specified, the pitch/beat transcription and the similarity
score computation are totally automatic. The average
response time of our system (with about 800 songs) takes
about 3 seconds on a Pentium III 800 when the user
specifies a query from the start of a song. The
performance is satisfactory, as long as the users can sing
or hum the intended song with correct relative pitches.

The response time could take much longer if the user
specifies a query from anywhere in the middle of a song.
Moreover, the 800 songs in the system could not nearly
match the number of songs in a real-world application,
such as a typical popular karaoke bar, which can host up
to 10,000 songs. Therefore, we are adding more songs to
the database to match the status of a real-world
application. More importantly, with more and more
songs in the database, we are investigating tree-based
search techniques to shorten the response time
significantly without sacrificing the performance.

2. Related Work

Content-based multimedia information retrieval is a
popular and useful research topic, but most research is
focused on the media of text, image and video [6]. Even
there are several publications on audio retrieval [2], the
research on music retrieval based on acoustic inputs are
not common. However, as the digital music is all over
the internet, the capability to be able to search/retrieve
digital music files are getting more and more important.

Ghias et al. [1] published one of the early papers on
query by singing. They applied autocorrelation to obtain
the fundamental frequency, and the pitch vector is then
cut into notes. To accommodate the problem of different
starting key, the obtained notes are converted into ternary
contour of three characters: U (up, meaning this note is
higher than the previous one), R (repeat, meaning this
note is the same as the previous one), D (down, meaning
this note is lower than the previous one). The comparison
engine, based on longest common subsequence, is then
applied to the ternary contours to find the most likely
song. However, due to the limited computing power at
that time, their pitch tracking takes 20-45 seconds, and
there were only 183 songs in the database.

R. J. McNab et al. [7,8,9,10], in collaboration with New
Zealand Digital Library, have published several papers
on their experiment of query by singing. They applied
Gold-Rabiner algorithm [13] for pitch tracking, and the
pitch vector was then cut into notes based on energy
levels and transition amounts. There were about 9400
songs in their database and they are the first one to put
their system on the web. Their system, though lack of
performance evaluation in terms of recognition rate, is

still considered an excellent example of content-based
music retrieval for real-world applications.

3. CBMR System

In this section. we shall explain the operations of CBMR.
In particular, we will focus on the dynamic-
programming-based comparison procedure, which is the
most crucial factor in determining the performance of the
system.

3.1. Input Collection

The acoustic input (which could be singing, humming, or
music instrument playing) is recorded from a PC
microphone directly with a length of 8 seconds, sample
rate of 11025, 8 bit resolution and single channel (mono).
The system can also reads the acoustic input from a
WAV file directly. Before further processing, the
acoustic input have to go through a low-pass filter at
1047 Hz in order to cut down unwanted high-frequency
components.

3.2. Pitch Tracking

Once a clean acoustic input of 8 seconds is obtained, we
need to do pitch tracking in order to identify the pitch
frequency with respect to time. The acoustic input is
first put into frames of 512 points, with 340 points of
overlap; this corresponds to 1/64 second for each pitch
frequency. Then every 4 pitch frequencies are averaged
to merge into a single frequency, thus the final pitch
vector has a time scale of 1/16 second.

There are plenty methods for pitch tracking [1] in the
literature. For our system, we have implemented pitch
tracking using two methods:

1. Autocorrelation function [4]
2. Average magnitude difference function (AMDF) [4]

Both methods are performed in time domain and have
comparable performance. Moreover, for software
implementation on current Pentium-based PC, both
methods are fast enough for real-time pitch tracking.
However, when considering chip/hardware
implementation, AMDF does not require multiplication
and is thus less computation-intensive.

After obtaining the pitch frequencies, we use the
following formula to transform them into the
representation of semitone:

69
440

log*12 2 +

= freqsemitone

The semitone representation here is equivalent to the one
used by MIDI format, where 69 represents central LA
(A440, 440 Hz). Subsequent smoothing and comparison
operations are based on semitones.

3.3. Pitch Smoothing

The pitch contour obtained in the previous step may not
be smooth enough due to the following reasons:

1. Unvoiced segments and random noise can cause

unreasonably high pitch.
2. A strong second harmonics can produce pitch

doubling effect.

To eliminate these undesirable pitches, the system has a
simple end-point detection based on energy levels. If the
energy level is lower than a threshold, then the
corresponding pitch semitones are set to zero. Also if the
identified pitch semitones are higher than 84 (or 1047 Hz
in frequency), they are also set to zero. Moreover, to
ensure overall smoothness, we put the pitch contour
through a medium filter of size 5.

3.4. Dynamic Time Warping and Key Transposition

For elastic match, we can simply use dynamic time
warping (DTW) [4] to compute the distance between the
input pitch vector and that of each songs in the database.
Suppose that the input pitch vector (or test vector) is
represented by ,,,1),(miit l= and the reference pitch
vector (reference vector) by njjr ,,1),(l= . These
two vectors are not necessarily of the same length and
we can apply dynamic time warping to match each point
of the test vector to that of the reference vector in an
optimal way. That is, we want to construct a nm×
DTW table),(jiD according to the following forward
dynamic programming algorithm:

Optimal value function:

),(jiD is the minimum distance starting from the left-
most side (1=i) of the DTW table to the current
position),(ji .

Recurrence relation:

−−
−−
−−

+=
)2,1(
)1,1(
)1,2(

min),(),(
jiD
jiD
jiD

jidjiD

where),(jid is the node cost associated with)(it and
)(jr and can be defined as

η−−= |)()(|),(jritjid
In the preceding formula, η is a small number and its
function is to bias the search toward a longer matched
path instead of a shorter one. Moreover, the recursion
shows that the optimal path can allow the test input to be
within half to twice the size of the reference vector. This
constrain is reasonable since it is rather difficult to
sing/hum a song more than twice or below half of the
speed of the original song.

Boundary conditions:

The boundary conditions for the above recursion can be
expressed as

njjrtjD
miiD

,,1|,)()1(|),1(
,,2,)1,(

l

l

=−=
=∞=

The first equation ensures that the optimal DTW path
never starts from the middle of the test vector. The
second equation indicates that the optimal DTW path can
start from anywhere in the middle of the reference vector.
These conditions are reasonable since we would like to
match the whole test vector to a part of the reference
vector.

The cost of the optimal DTW path is defined as

),(min jmD
j

After finding the optimizing j , we can back track to
obtain the entire optimal DTW path.

In practice, m = 16*8 = 128 since we usually have 8
seconds of recording; For this study, we assume the user
always sing/hum from the start of a song, therefore we
only need to consider the test vector as the beginning
part of each song. We assume that the reference vector
cannot be longer than 1.4 times the size of the test vector,
hence n = 16*8*1.4 = 179. Thus we need to construct a
DTW table of size up to 179128× . The size of the
DTW table could be smaller since usually we discard
silence (or rests) of both the test and reference semitones.
(If we want the match to start from anywhere in the
middle of a song, then for a typical song of 3 minutes,
n=16*60*3=2880. Hence the DTW table is huge with
size 2880128× . It is doable but it is out of the scope
of this paper.)

Besides constructing the DTW table for computing each
similarity scores, we still need to deal with the problem
of different keys for different users. For instance, a

female singer usually has a higher overall key than a man.
To deal with the problem, first we shift the test vector to
the same mean as that of the part of the reference vector
having the same length as the test vector. Moreover, to
guarantee better performance, we can optionally take a
heuristic approach that shifts the entire input pitch vector
to a suitable position that can generate the minimum
DTW distance. The method for this key transposition
procedure can be described next:

1. Set initial parameters and make t and r zero mean:

−=
−=

=
=

)(
)(

0
4

rmeanrr
tmeantt

center
span

(The last two equations make both t and r zero mean.)

2. Compute the DTW distances:

+=
=

−=−

),(
),(

),(

1

0

1

spantrdtws
trdtws

spantrdtws

3. Find the minimum DTW distance and update center :

If },,min{ 1011 ssss −− = , then
center = center – span

else if },,min{ 1011 ssss −= , then
center = center + span

4. Update span and check stopping condition:

If 2>span , 2/spanspan = , go to step 3.
Otherwise stop the iteration.

In our most complicated setting, the key transposition
operation involves 5 DTW distance computation. In
other words, the computation of comparing an acoustic
input with 800 songs in the database involves computing
4000 DTW tables, each with size of around 179128× .

To avoid the problem of different keys for different
singer, most related work applied difference operator
before invoking DTW or other similarity measure.
However, difference operator amplifies noises and does
not lead to acceptable performance in our simulation.

4. Performance Evaluation

In this section we present the performance evaluation of
our CBMR system. We have around 200 recorded clips
of songs sung or hummed by 14 persons (9 males, 5

females), Each recording takes from 5 to 8 seconds. The
recording conditions are: the sample rate is 11025, 8 bit
resolution, single channel (mono). All of the recordings
start from the beginning of a song. Some of the
recordings include talking and laughing in order to test
the robustness of the system. And there are about 800
songs in the database.

We divide the performance evaluation into two parts:
one with the use of a single DTW for computing each
similarity score, the other with the use of five DTWs to
include key transposition. Since we are concerned with
both correct recognition rate and computation time, we
will list these data extensively in the following
discussion. Also we always assume the match always
starts at the beginning of a song.

We performed all the tests on a PC with a CPU of
Pentium-III 800MHz, 256 MB of RAM.

4.1. Test of 1-DTW

Without key transposition, the computation of each
similarity score requires only one application of DTW.
Therefore the computation time is shorter but the
performance is not as good as the 5-DTW test to be
explained next. The average response time for each
recording is about 1.557 seconds, and the performance
can be seen from the following pie chart:

From the above figure, the top-20 recognition rate
(percentage of recordings that CBMR can find the
correct intended songs in the top-20 ranking) is 84%, the
top-3 recognition rate is 75%, and the top-1 recognition
rate is 66%.

4.2. Test of 5-DTW

With the use of key transposition, the computation of
each similarity score requires the use of 5 DTW. The
performance can be seen from the following pie chart:

From the above figure, the top-20 recognition rate is
86.5%, the top-3 recognition rate is 84%, and the top-1
recognition rate is 76%. The average response time for
each recording is about 2.556 seconds. As expected the
computation is longer, but the performance is better.

4.2. Test of Combining 1-DTW and 5-DTW

An intuitive idea to improve the system is to take a
hierarchical approach that uses 1-DTW to filter out 700
of the 800 songs, and leave only 100 songs for 5-DTW to
do a detailed comparison. Presumably this hierarchical
approach will shorten the response time without
sacrificing the performance to much. The response time
is about 3 seconds for each recording, and the
performance can be seen from the next figure:

From the above figure, the top-20 recognition rate
remains 85%, the top-3 recognition rate is 83.5%, and
the top-1 recognition rate is still 78%. In other words, the
performance is almost the same as that of 5-DTW, but
the response time have been effectively reduced from
2.556 to 1.765 seconds.

5. Conclusions and Future Work

In this paper, a hierarchical approach for combining
DTW-based comparison engines is proposed and used in
a CBMR system. The performance and response time of
the simulation demonstrate the feasibility of the system
in operation. Future work includes the following items:
1. Note segmentation for quick performance evaluation

based on note-level comparison.
2. Better smoothing techniques to enable the use of

difference operator.
3. Other speedup schemes to allow the match start from

anywhere in the middle of a song.

References

[1] A. Ghias, J. Logan, D. Chamberlain, B. C. Smith,

“Query by humming-musical information retrieval in
an audio database”, ACM Multimedia ’95 San
Francisco, 1995.
(http://www2.cs.cornell.edu/zeno/Papers/humming/h
umming.html)

[2] J. Foote, "An Overview of Audio Information
Retrieval," In Multimedia Systems, vol. 7 no. 1, pp.
2-11, ACM Press/Springer-Verlag, January 1999.

[3] C. C. Liu and A. L. P. Chen, “A Multimedia Database
System Supporting Content-Based Retrieval”,
Journal of Information Science and Engineering,
13 ,369-398,1997.

[4] J. R. Deller, J. G. Proakis, J. H. L. Hansen, "Discrete-
time processing of speech signals," New
York :Macmillan Pub. Co. , 1993.

[5] J. Brown and B. Zhang, “Musical frequency tracking
using the methods of conventional and ‘narrowed’
autocorrelation”. Journal of the Acoustical Society of
America, Volume 89, Number 5, pages 2346-2354,
1991.

[6] M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B.
Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D.
Steele, and P. Yanker, “Query by image and video
content: the QBIC system,” IEEE Computers, Vol. 28,
No. 9, pp.23-32, 1995.

[7] R. J. McNab, L. A. Smith, Jan H. Witten, “Towards
the Digital Music Library: Tune Retrieval from
Acoustic Input” ACM, 1996.

[8] R. J. McNab, L. A. Smith, Jan H. Witten, “Signal
Processing for Melody Transcription” Proceedings of
the 19th Australasian Computer Science Conference,
1996.

[9] R. J. McNab, L. A. Smith, “Melody transcription for
interactive applications” Department of Computer
Science University of Waikato, New Zealand.

[10] R. J. McNab, L. A. Smith, I. H. Witten and C. L.
Henderson, "Tune Retrieval in the Multimedia
Library,"

[11] N. Kosugi, Y. Nishihara, S. Kon'ya, M.
Yamamura, and K. Kushima, "Music Retrieval by
Humming – Using Similarity Retrieval over High
Dimensional Feature Vector Space," pp 404-407,
IEEE 1999.

[12] A. Uitdenbogerd and J. Zobel, "Melodic
Matching Techniques for Large Music Databases",
(http://www.kom.e-technik.tu-
darmstadt.de/acmmm99/ep/uitdenbogerd/)

[13] B. Gold and L. Rabiner, "Parallel processing
techniques for estimating pitch periods of speech in
the time domain," J. Acoust. Soc. Am. 46 (2), pp
442-448, 1969.

http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/uitdenbogerd/
http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/uitdenbogerd/

