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Abstract 
 
This paper presents a query-by-singing system of which 
the comparison engine is mostly based on the concept of 
dynamic programming (DP).  The system, known as 
CBMR (Content-Based Music Retrieval), facilitates the 
content-based song database retrieval via users' acoustic 
inputs. CBMR first takes the user's acoustic input from a 
microphone and converts it into a pitch vector. Then two 
levels of comparison procedures, both based on the 
concept of dynamic programming, are invoked to 
compute the similarity between the user's pitch vector 
and that of each song in the database. CBMR then shows 
a ranked result according to the computed similarity 
scores. We have tested CBMR extensively and found the 
performance is satisfactory for average people with 
mediocre singing capability. Our studies demonstrate the 
importance of using dynamic programming for elastic 
matching in multimedia informational retrieval.  
 
1.  Introduction 
 
This paper presents a query-by-singing system that is 
based on two levels of dynamic programming as its 
comparison engine. The system facilitates the content-
based song database retrieval via users' acoustic inputs, 
which means that the system's friendly interface allows 
the users to retrieve songs based on a few notes sung or 
hummed naturally to the microphone. Therefore the 
traditional way of song retrieval (particularly in the 
applications of karaoke or digital music library) via the 
search of keywords of titles, singers or lyrics can be 
avoided. 
 
The tasks of the system can be categorized into three 
stages: preprocess, on-line process, and postprocess.  For 
the preprocess stage, we need to read each song and put 

the melody/beat information into several indexed files 
for quick access.  Usually the songs in the database are in 
MIDI (Music Instrument Digital Interface) format, which 
contains all the music elements of a song and it is 
equivalent to sheet music. Before extracting the 
pitch/beat information, we also need to identify the major 
track of the MIDI file. The major track is more or less 
equivalent to the vocal track of a MIDI file, which can be 
defined as the track that, when hearing it, human can 
identify the intended song immediately. 
 
During the on-line process stage, the user can specify a 
query by singing or humming a piece of tune (that 
contains several notes for identifying a song) to a PC 
microphone directly. Several time-domain-based 
methods, such as autocorrelation or average magnitude 
difference function, are used to find the most likely pitch, 
and some heuristics (such as continuity and energy levels) 
are employed to eliminate unwanted pitches which might 
result from either unvoiced segments of the acoustic 
input or the undesirable effect of  pitch doubling. 
 
At the postprocess stage, the computed pitch vector 
together with related timing information are transformed 
into the same middle representation that was used in 
encoding the pitch/beat information of songs in the 
database. Before invoking similarity comparison, the 
middle representation must be transformed into a format 
that does not rely on the absolute values of the identified 
pitches. This is usually done by the difference operator, 
as reported by previous work [1,7,8,9,10]. However, we 
found that the difference operator amplifies noises and 
leads to poor performance. Thus we adopt a heuristic 
method to shift the input pitch vector to have the same 
average value as that of each song's pitch in the database. 
Moreover, we can apply key transposition to find a better 
shifted pitch vector for a better match in dynamic time 
warping. The system then returns a ranked list according 
to similarity scores. 
 
The preprocess requires human interaction to identify the 
major track for extracting the pitch/beat information 
from a song in MIDI format. Once the major track is 



specified, the pitch/beat transcription and the similarity 
score computation are totally automatic. The average 
response time of our system (with about 800 songs) takes 
about 3 seconds on a Pentium III 800 when the user 
specifies a query from the start of a song. The 
performance is satisfactory, as long as the users can sing 
or hum the intended song with correct relative pitches.  
 
The response time could take much longer if the user 
specifies a query from anywhere in the middle of a song. 
Moreover, the 800 songs in the system could not nearly 
match the number of songs in a real-world application, 
such as a typical popular karaoke bar, which can host up 
to 10,000 songs. Therefore, we are adding more songs to 
the database to match the status of a real-world 
application. More importantly, with more and more 
songs in the database, we are investigating tree-based 
search techniques to shorten the response time 
significantly without sacrificing the performance. 
 
2.  Related Work 
 
Content-based multimedia information retrieval is a 
popular and useful research topic, but most research is 
focused on the media of text, image and video [6]. Even 
there are several publications on audio retrieval [2], the 
research on music retrieval based on acoustic inputs are 
not common. However, as the digital music is all over 
the internet, the capability to be able to search/retrieve 
digital music files are getting more and more important. 
 
Ghias et al. [1] published one of the early papers on 
query by singing. They applied autocorrelation to obtain 
the fundamental frequency, and the pitch vector is then 
cut into notes. To accommodate the problem of different 
starting key, the obtained notes are converted into ternary 
contour of three characters: U (up,  meaning this note is 
higher than the previous one), R (repeat, meaning this 
note is the same as the previous one), D (down, meaning 
this note is lower than the previous one). The comparison 
engine, based on longest common subsequence, is then 
applied to the ternary contours to find the most likely 
song. However, due to the limited computing power at 
that time, their pitch tracking takes 20-45 seconds, and 
there were only 183 songs in the database. 
 
R. J. McNab et al. [7,8,9,10], in collaboration with New 
Zealand Digital Library, have published several papers 
on their experiment of query by singing. They applied 
Gold-Rabiner algorithm [13] for pitch tracking, and the 
pitch vector was then cut into notes based on energy 
levels and transition amounts. There were about 9400 
songs in their database and they are the first one to  put 
their system on the web. Their system, though lack of 
performance evaluation in terms of recognition rate, is 

still considered an excellent example of content-based 
music retrieval for real-world applications. 
 
3. CBMR System 
 
In this section. we shall explain the operations of CBMR. 
In particular, we will focus on the dynamic-
programming-based comparison procedure, which is the 
most crucial factor in determining the performance of the 
system. 
 
3.1. Input Collection 
 
The acoustic input (which could be singing, humming, or  
music instrument playing) is recorded from a PC 
microphone directly with a length of 8 seconds, sample 
rate of 11025, 8 bit resolution and single channel (mono).  
The system can also reads the acoustic input from a 
WAV file directly. Before further processing, the 
acoustic input have to go through a low-pass filter at 
1047 Hz in order to cut down unwanted high-frequency 
components. 
 
3.2. Pitch Tracking 
 
Once a clean acoustic input of 8 seconds is obtained, we 
need to do pitch tracking in order to identify the pitch 
frequency with respect to time.  The acoustic input is 
first put into frames of 512 points, with 340 points of 
overlap; this corresponds to 1/64 second for each pitch 
frequency. Then every 4 pitch frequencies are averaged 
to merge into a single frequency, thus the final pitch 
vector has a time scale of 1/16 second.  
 
There are plenty methods for pitch tracking [1] in the 
literature. For our system, we have implemented pitch 
tracking using two methods: 
 

1. Autocorrelation function [4] 
2. Average magnitude difference function (AMDF) [4] 

 
Both methods are performed in time domain and have 
comparable performance. Moreover, for software 
implementation on current Pentium-based PC, both 
methods are fast enough for real-time pitch tracking. 
However, when considering chip/hardware 
implementation, AMDF does not require multiplication 
and is thus less computation-intensive. 
 
After obtaining the pitch frequencies, we use the 
following formula to transform them into the 
representation of semitone: 
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The semitone representation here is equivalent to the one 
used by MIDI format, where 69 represents central LA 
(A440, 440 Hz). Subsequent smoothing and comparison 
operations are based on semitones. 
 
3.3. Pitch Smoothing 
 
The pitch contour obtained in the previous step may not 
be smooth enough due to the following reasons: 
 
1. Unvoiced segments and random noise can cause 

unreasonably high pitch. 
2. A strong second harmonics can produce pitch 

doubling effect. 
 
To eliminate these undesirable pitches, the system has a 
simple end-point detection based on energy levels. If the 
energy level is lower than a threshold, then the 
corresponding pitch semitones  are set to zero. Also if the 
identified pitch semitones are higher than 84 (or 1047 Hz 
in frequency), they are also set to zero. Moreover, to 
ensure overall smoothness, we put the pitch contour 
through a medium filter of size 5. 
 
3.4. Dynamic Time Warping and Key Transposition 
 
For elastic match, we can simply use dynamic time 
warping (DTW) [4] to compute the distance between the 
input pitch vector and that of each songs in the database. 
Suppose that the input pitch vector (or test vector) is 
represented by ,,,1),( miit l=  and the reference pitch 
vector (reference vector) by njjr ,,1),( l= . These 
two vectors are not necessarily of the same length and 
we can apply dynamic time warping to match each point 
of the test vector to that of the reference vector in an 
optimal way. That is, we want to construct a nm×  
DTW table ),( jiD according to the following forward 
dynamic programming algorithm: 
 
Optimal value function: 
 

),( jiD  is the minimum distance starting from the left-
most side ( 1=i ) of the DTW table to the current 
position ),( ji .  
 
Recurrence relation: 
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where ),( jid  is the node cost associated with )(it  and 
)( jr  and can be defined as 

η−−= |)()(|),( jritjid  
In the preceding formula, η  is a small number and its 
function is to bias the search toward a longer matched 
path instead of a shorter one. Moreover, the recursion 
shows that the optimal path can allow the test  input to be 
within half to twice the size of the reference vector. This 
constrain is reasonable since it is rather difficult to 
sing/hum a song more than twice or below half of the 
speed of the original song.  
 
Boundary conditions: 
 
The boundary conditions for the above recursion can be 
expressed as  
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The first equation ensures that the optimal DTW path 
never starts from the middle of the test vector. The 
second equation indicates that the optimal DTW path can 
start from anywhere in the middle of the reference vector.  
These conditions are reasonable since we would like to 
match the whole test vector to a part of the reference 
vector. 
 
The cost of the optimal DTW path is defined as 

),(min jmD
j

 

After finding the optimizing j , we can back track to 
obtain the entire optimal DTW path. 
 
In practice, m = 16*8 = 128 since we usually have 8 
seconds of recording; For this study, we assume the user 
always sing/hum from the start of a song, therefore we 
only need to consider the test vector as the beginning 
part of each song. We assume that the reference vector 
cannot be longer than 1.4 times the size of the test vector, 
hence n = 16*8*1.4 = 179. Thus we need to construct a 
DTW table of size up to 179128× . The size of the 
DTW table could be smaller since usually we discard 
silence (or rests) of both the test and reference semitones. 
(If we want the match to start from anywhere in the 
middle of a song, then for a typical song of 3 minutes, 
n=16*60*3=2880. Hence the DTW table is huge with 
size 2880128× . It is doable but it is out of the scope 
of this paper.)  
 
Besides constructing the DTW table for computing each 
similarity scores, we still need to deal with the problem 
of different keys for different users. For instance, a 



female singer usually has a higher overall key than a man. 
To deal with the problem, first we shift the test vector to 
the same mean as that of the part of the reference vector 
having the same length as the test vector. Moreover, to 
guarantee better performance, we can optionally take a 
heuristic approach that shifts the entire input pitch vector 
to a suitable position that can generate the minimum 
DTW distance. The method for this key transposition 
procedure can be described next: 
 
1. Set initial parameters and make t  and r  zero mean: 
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(The last two equations make both  t  and r  zero mean.) 
 
2. Compute the DTW distances: 
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3. Find the minimum DTW distance and update center : 

If },,min{ 1011 ssss −− = , then 
center = center – span 

else if },,min{ 1011 ssss −= , then 
center = center + span 

 
4. Update span  and check stopping condition: 

If 2>span , 2/spanspan = , go to step 3. 
Otherwise stop the iteration. 

 
In our most complicated setting, the key transposition 
operation involves 5 DTW distance computation. In 
other words, the computation of comparing an acoustic 
input with 800 songs in the database involves computing 
4000 DTW tables, each with size of around 179128× . 
 
To avoid the problem of different keys for different 
singer, most related work applied difference operator 
before invoking DTW or other similarity measure. 
However, difference operator amplifies noises and does 
not lead to acceptable performance in our simulation.  
 
4. Performance Evaluation 
 
In this section we present the performance evaluation of 
our CBMR system. We have around 200 recorded clips 
of songs sung or hummed by 14 persons (9 males, 5 

females), Each recording takes from 5 to 8 seconds. The 
recording conditions are: the sample rate is 11025, 8 bit 
resolution, single channel (mono). All of the recordings 
start from the beginning of a song. Some of the 
recordings include talking and laughing in order to test 
the robustness of the system. And there are about 800 
songs in the database. 
 
We divide the performance evaluation into two parts: 
one with the use of a single DTW for computing each 
similarity score, the other with the use of five DTWs to 
include key  transposition. Since we are concerned with 
both correct recognition rate and computation time, we 
will list these data extensively in the following 
discussion. Also we always assume the match always 
starts at the beginning of a song. 
 
We performed all the tests on a PC with a CPU of 
Pentium-III 800MHz, 256 MB of RAM.  
 
4.1. Test of 1-DTW 
 
Without key transposition, the computation of each 
similarity score requires only one application of DTW. 
Therefore the computation time is shorter but the 
performance is not as good as the 5-DTW test to be 
explained next. The average response time for each 
recording is about 1.557 seconds, and the performance 
can be seen from the following pie chart: 

 
From the above figure, the top-20 recognition rate 
(percentage of recordings that CBMR can find the 
correct intended songs in the top-20 ranking) is 84%, the 
top-3 recognition rate is 75%, and the top-1 recognition 
rate is 66%.  
 
4.2. Test of 5-DTW 
 
With the use of key transposition, the computation of 
each similarity score requires the use of 5 DTW. The 
performance can be seen from the following pie chart: 



 
From the above figure, the top-20 recognition rate is 
86.5%, the top-3 recognition rate is 84%, and the top-1 
recognition rate is 76%. The average response time for 
each recording is about 2.556 seconds.  As expected the 
computation is longer, but the performance is better.   
 
4.2. Test of Combining 1-DTW and 5-DTW 
 
An intuitive idea to improve the system is to take a 
hierarchical approach that uses 1-DTW to filter out 700 
of the 800 songs, and leave only 100 songs for 5-DTW to 
do a detailed comparison. Presumably this hierarchical 
approach will shorten the response time without 
sacrificing the performance to much. The response time 
is about 3 seconds for each recording, and the 
performance can be seen from the next figure:

From the above figure, the top-20 recognition rate 
remains 85%, the top-3 recognition rate is 83.5%, and 
the top-1 recognition rate is still 78%. In other words, the 
performance is almost the same as that of 5-DTW, but 
the response time have been effectively reduced from 
2.556 to 1.765 seconds. 
 
5. Conclusions and Future Work 
 
In this paper, a hierarchical approach for combining 
DTW-based comparison engines is proposed and used in 
a CBMR system. The performance and response time of 
the simulation demonstrate the feasibility of the system 
in operation. Future work includes the following items: 
1. Note segmentation for quick performance evaluation 

based on note-level comparison. 
2.  Better smoothing techniques to enable the use of 

difference operator. 
3. Other speedup schemes to allow the match start from 

anywhere in the middle of a song. 
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